Parallel Computing: The Good, the Bad and the Ugly

ICCS, Berkeley, Jan 28, 2011

Pradeep K. Dubey

IEEE Fellow and Director of Parallel Computing Lab Intel Corporation

Who We Are: Parallel Computing Lab

Parallel Computing -- Research to Realization

- Worldwide leadership in throughput/parallel computing, industry role-model for application-driven architecture research, ensuring Intel leadership for this application segment
- Dual Charter:
 - Application-driven architecture research and multicore/manycore product-intercept opportunities

Architectural focus:

"Feeding the beast' (memory) challenge, domain-specific support, massively threaded machines, unstructured accesses, distributed decomposition

Workload focus:

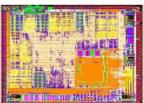
 Multimodal real-time physical simulation, Behavioral simulation, Interventional medical imaging, Large-scale optimization (FSI), Massive data computing, non-numeric computing

Industry and academic co-travelers

Mayo, HPI, CERN, Stanford (Prof. Fedkiw), UNC (Prof. Manocha), Columbia (Prof. Broadie)

Recent accomplishments:

- First TFlop SGEMM and highest performing SparseMVM on KNF silicon demo'ed at SC'09
- ▶ Fastest LU/Linpack demo on KNF at ISC'10
- Fastest search, sort, and relational join Best Paper Award for Tree Search at SIGMOD 2010



Who Needs Compute

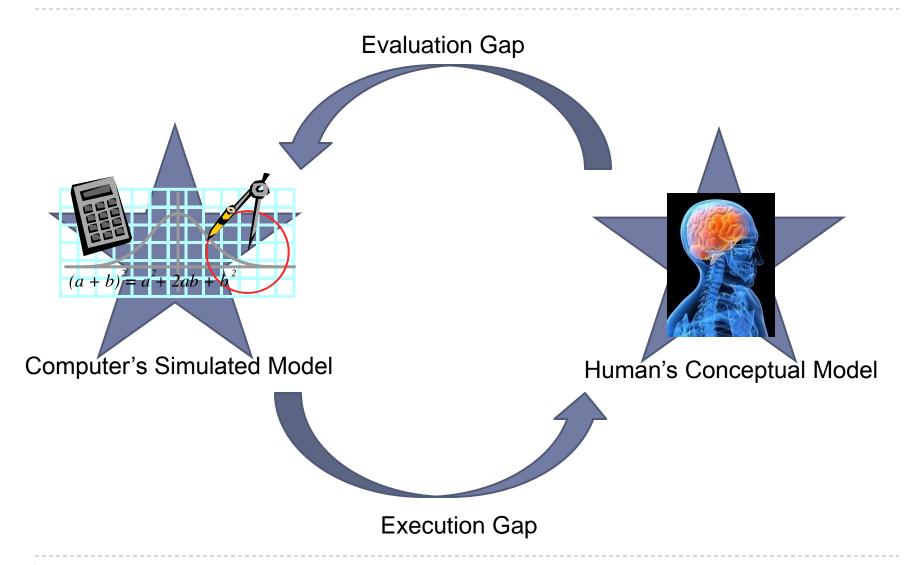
Traditional drivers of compute

- Norman's Gulf: Quest for natural human-machine interface
- Entertainment: Unending fascination with virtual and unreal
- The data deluge: The problem of drinking out of fire hydrant
- Real-time analytics: Decision delayed is objective denied
- Curious minds want to know (HPC): Science moves on!

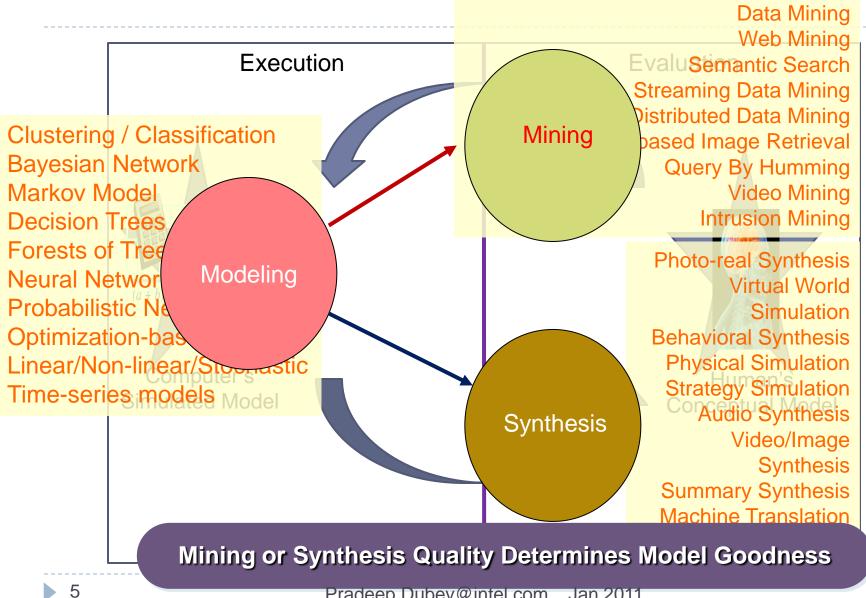
Recent catalysts of compute

- Changing demographics of computer users
- Massive compute meets massive data
- Connected computing

Norman's Gulf



Decomposing Compute-Intensive Apps



Interactive RMS Loop

Recognition

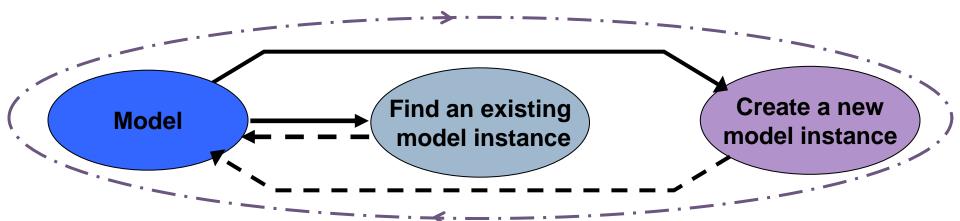
What is ...?

Mining

Is it ...?

Synthesis

What if ...?

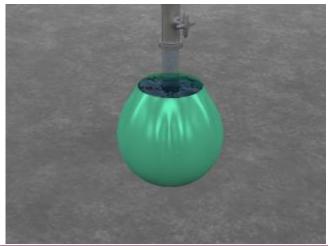


Most RMS apps are about enabling interactive (real-time) RMS Loop (iRMS)

Illustrative Parallel Computing Apps



Insatiable Appetite for Compute ...



Prof. Ron Fedkiw, Computer Science/Stanford and Jon Su, PCL/Intel Labs

(Deformable and thin) Solid-Fluid Coupling

10s simulation takes 4 days on a Tflop compute node!

More the better ...

10000x 1000x PU Performance 100x 10x

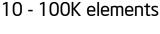
- Haptic dynamics in haptic training apps
 - System fully usable in the operating room

For real-time training tools & very accurate prediction

100K - 1M elements

- Interactive quasi-statics simulations of 100K elements
 - Good usability for planning and prediction

- Offline dynamic Simulations of 100K elements
 - Limited usability for prediction



- Offline quasi-statics simulations of 10K elements
 - Impractical for use in clinical environments

1 - 10K elements

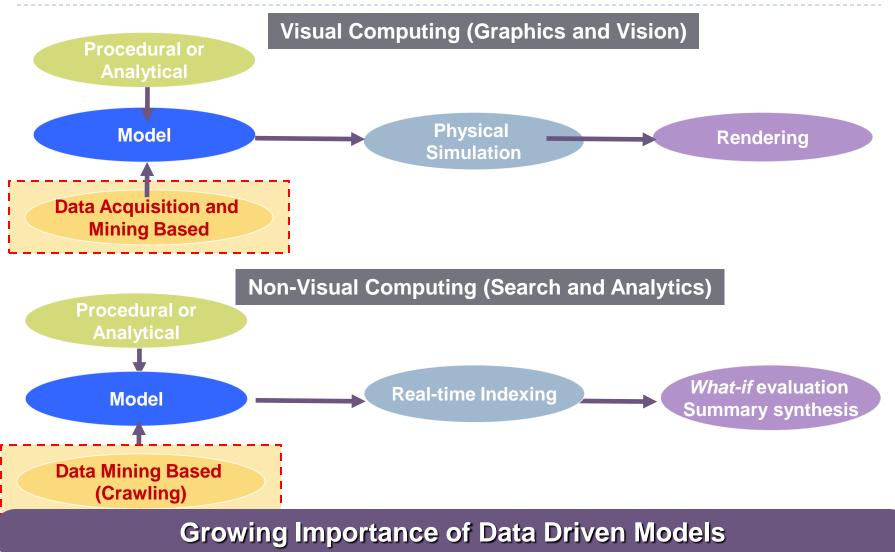
Force simulations for visual rendering: 10s of Hz Force simulations for haptic rendering: KHz or more

Entertainment to Interventional Medical Imaging: Physics plays a critical role and drives compute!

1x

CPU Today

Parallel Computing: Visual or Analytics



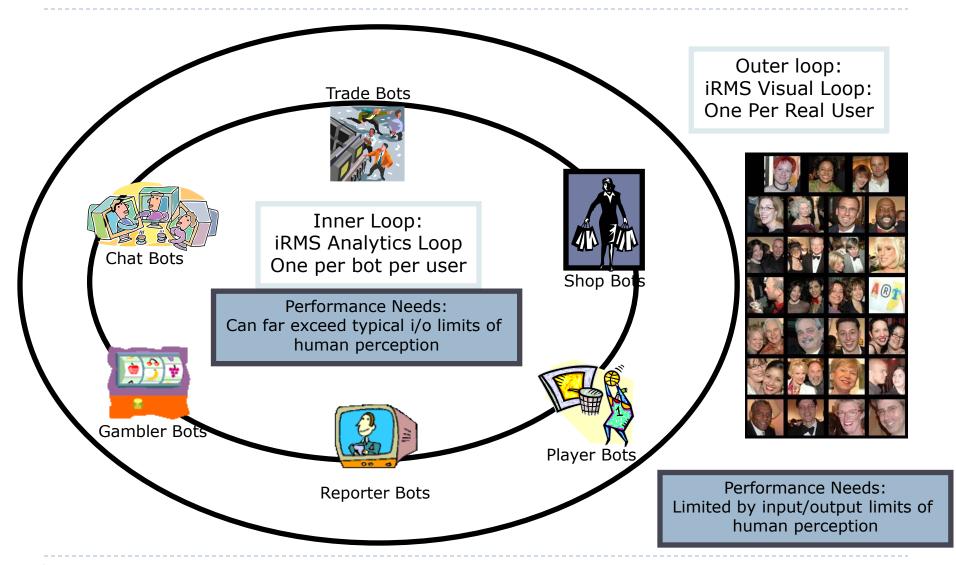
Massive Data & Ubiquitous Connectivity

- Data-driven models are now tractable and usable
 - We are not limited to analytical models any more
 - No need to rely on *heuristics* alone for unknown models
 - Massive data offers new algorithmic opportunities
 - Many traditional compute problems worth revisiting
- Web connectivity significantly speeds up modeltraining
- Real-time connectivity enables continuous model refinement
 - Poor model is an acceptable starting point
 - Classification accuracy improves over time

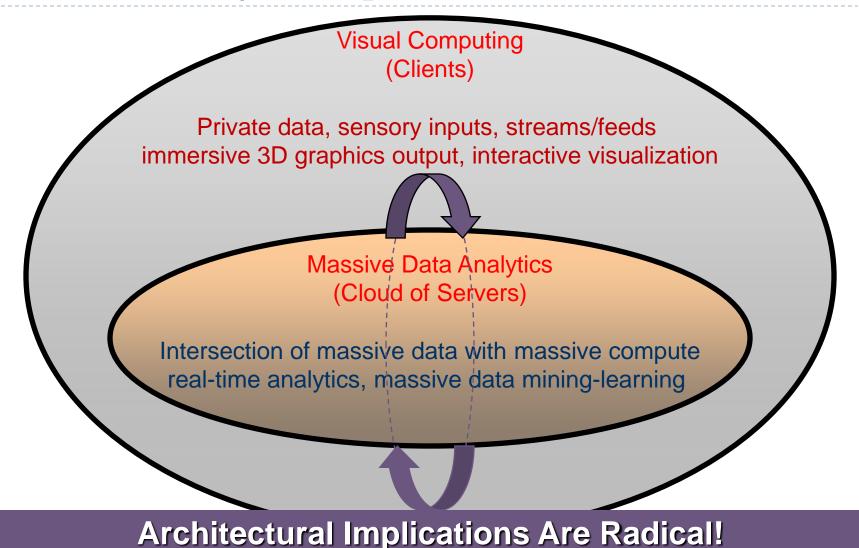
Nested RMS

Recognition Mining **Synthesis** Is it ...? What is ...? What if ...? Graphics Rendering + Physical Simulation Semantic Web Mining Structured Data + Learning & Synthesized Unstructured Filling Ontologies **Structures** Mining **Blogs** Structured Augmentation Learning & Visual Input **Synthesized** Modeling **Visuals** Streams Computer Reality Augmentation Vision

Nested RMS Instance: Virtual World



Where is my computer ©



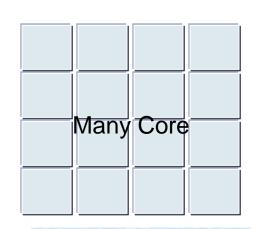
Architectural Challenges

- Compute density
- Data management: Feeding the Beast
- Distributed decomposition
- Non-ninja parallel programming

Multicore Versus Manycore

Single Core

Multi-Core



Many Core makes sense for workloads with high enough "P "parallel component - for simplicity, we call these Highly Parallel

$$S = \frac{1}{(1-P) + \frac{P}{N}}$$

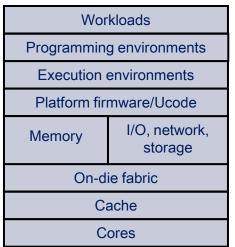
$$S = \frac{1}{(1-P)K_N + \frac{P}{N}}$$

For
$$S \ge 1$$
, $P \ge \frac{N(K_N - 1)}{NK_N - 1}$

S = speedup, P = parallel fraction, # of Cores = N, Kn = single thread performance (single core/multicore)

Our Approach: Start at the Top

Architecture-aware analysis of computational needs of parallel applications (arch-app co-design)



Focus on specific co-travelers and domains: HPC/Imaging/Finance/Physical Simulations/Medical/...

Step 1: Algorithm/parallelization

Step 2: Architecture-specific

Intel Xeon, Intel MIC, Nvidia GTX, ...

Step 3: Platform-specific: CPU+GPU, multi-card, multi-node, cluster ...

Step 4: Productivity or "Bridging the Ninja Gap"

Languages: C/C++, OpenCL, Cuda, Ct (ArBB), ...

Libraries: MKL, domain-specific ...

Architecture Specs

	Intel Westmere	Intel KNF
Sockets	2	1
Cores/socket	6	32
Core Frequency (GHz)	3.3	1.2
SIMD Width	4	16
Peak Compute	316 GFLOPS	1,228 GFLOPS

Ratio of peak compute = 4X

Case-Study-I (3-D Stencil Operations)¹

Algorithm/Optimization	Incremental Speedup
SIMDfication	1.8X
Multi-threading (Non-blocked version is bandwidth bound)	2.1X

Perform Cache-blocking (2.5D Spatial + 1D Temporal)²

Blocking Optimization	1.7X
Multi-threading (Blocked version is compute-bound and scales further)	1.8X
SIMD Further scaling of compute-bound code	1.9X
ILP Optimization	1.1X

Overall Speedup 24.1X

^{1.} Performance data on Intel Core i7 975, 4c at 3.33 GHz

^{2.} Details in SC'10 paper (3.5-D Blocking Optimization for Stencil Computations on Modern CPUs and GPUs by Nguyen et al.)

Case-Study-II (FFT)¹

Algorithm/Optimization	Incremental Speedup
Algorithm (Radix-4 Vs/ Radix-2)	1.72X
Multi-threading (Naïve Partitioning)	3.05X
Multi-threading (Intelligent Partitioning: load balanced)	1.23X
SIMDfication (Full V/s Partial SIMD)	1.18X
Memory Management (Double Buffering)	1.32X

Overall Speedup 10.1X

^{1.} Performance data on Intel Core i7 975, 4c at 3.33 GHz

Case-Study-III (Sparse Matrix Vector Multiplication)¹

Algorithm/Optimization	Incremental Speedup
Multi-threading (Naïve Partitioning)	1.72X
Multi-threading (Intelligent Partitioning: load balanced)	2.2X
SIMDfication	1.13X
Cache Blocking	1.15X
Register Tiling	1.2X

Overall Speedup	6.0X
-----------------	------

^{1.} Performance data on Intel Core i7 975, 4c at 3.33 GHz

Case-Study-IV (Graph Traversal)¹

Algorithm/Optimization	Incremental Speedup
Efficient Layout (Cache-Line Friendly)	10.1X
Hierarchical Blocking (Cache/TLB Friendly)	3.1X
SIMD	1.29X
ILP	1.35X
Multi-threading (Linear Scaling for compute-bound code)	3.9X
Overall Speedup	212.6X

^{1.} Performance data on Intel Core i7 975, 4c at 3.33 GHz

Case-Study-V (Tree Search)^{1,2}

Algorithm/Optimization	Incremental speedup
Efficient Layout (Memory Page-Blocking)	1.53X
Cache-Line Blocking	1.4X
SIMD	1.8X
ILP	2X
Multi-threading	3.9X

Overall Speedup

30.1X

^{1.} Performance data on Intel Core i7 975, 4c at 3.33 GHz

^{2.} Details in SIGMOD'10 paper (FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs by Kim et al.)

Case-Study-VI (Matrix Multiply)^{1, 2}

Algorithm/Optimization	Incremental Speedup
Loop Inversion	9X
Cache-Tiling	1.33X
Multithreading	2.4X
SIMD	2.2X

Overall Speedup

64X

I. Performance data on Intel Core i7 975, 4c at 3.33 GHz

^{2.} HiPC'2010 (Goa, India) Tutorial "Architecture Specific Optimizations for Modern Processors" by Dhiraj Kalamkar et.al.

Learning

- Parallel algorithms offer best speedup-effort Rol
 - Algorithmic core needs to evolve from pre-multicore era
- Technology-aware algorithmic improvements offer the next best speedup-effort Rol
 - Increasing compute density and data-parallelism
- Special attention to the least-scaling part of modern architectures: BW/op will be increasingly more critical to performance
 - Locality aware transformations
- Architecture-specific speedup is orders of magnitude less than commonly believed
 - 100-1000x CPU-GPU speedup myth

Summary

Massive Data Computing

- Insatiable appetite for compute
- It's all about three C's:
 - Content Connect -- Compute

Algorithmic Opportunity

- Algorithmic core needs to evolve from serial to parallel
- Massive data approach to traditional compute problems
 - Data ... data everywhere, ... not a bit of sense ... @

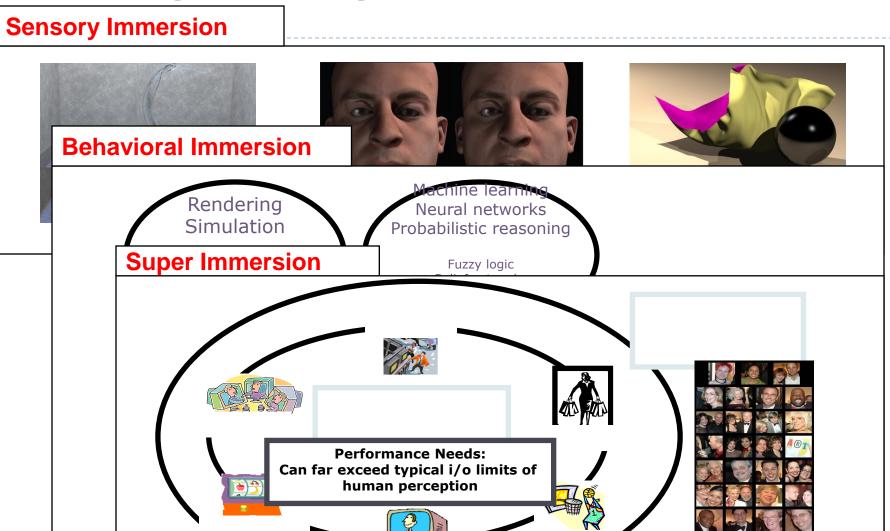
Performance Challenge

- Performance variability on the rise with parallel architectures
- Feeding the Beast: increasingly a performance bottleneck
- Programmer productivity key to market success

Thank You!

Questions?

Putting it all together



Computational Requirements for Bridging Norman's Gulf Are Huge!

Heterogeneous Computing – What it is

- Platform-driven
- ▶ Workload-driven ← Our focus
- Power/Form-factor driven

